MTH 516/616: Topology II Semester 2, 2022-23

January 16, 2023

Contents

1 Homology 2
1.1 Simplicial Homology 2
1.2 Singular Homology 2
1.3 Cellular homology 7
1.4 Mayer-Vietoris Sequences 8
1.5 Homology with coefficients 8
1.6 Applications of homology 9
2 Singular Cohomology 12
2.1 Cup product 15
2.2 Orientations and homology 16
2.3 Cap product and Poincaré Duality 18
3 Homotopy Groups 20

1 Homology

1.1 Simplicial Homology

(i) Motivation for homology.
(ii) n-simplices and Δ-complexes.
(iii) The free abelian group $\Delta_{n}(X)$ generated by the n-simplices.
(iv) The boundary homomorphism $\partial_{n}: \Delta_{n}(X) \rightarrow \Delta_{n-1}(X)$, defined by

$$
\partial_{n}(\sigma)=\sum_{i}(-1)^{i} \sigma \mid\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right]
$$

(v) The composition $\partial_{n} \partial_{n-1}=0$, and hence we have the chain complex

$$
\ldots \rightarrow \Delta_{n+1}(X) \xrightarrow{\partial_{n+1}} \Delta_{n}(X) \xrightarrow{\partial_{n-1}} \Delta_{n}(X) \rightarrow \ldots \rightarrow \Delta_{0}(X) \xrightarrow{\partial_{0}} 0
$$

(vi) The simplicial homology group $H_{n}^{\Delta}(X)=\operatorname{Ker} \partial_{n} / \operatorname{Im} \partial_{n+1}$.
(vii) The simplicial homologies of $S^{2}, S^{1} \times S^{1}, \mathbb{R} P^{2}$, and the Klein bottle.

1.2 Singular Homology

(i) Singular n-simplices $\sigma: \Delta^{n} \rightarrow X$.
(ii) The free abelian group $C_{n}(X)$ of singular n-chains.
(iii) The boundary map $\partial_{n}(\sigma)=\sum_{i} \sigma \mid\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right]$.
(iv) The composition $\partial_{n} \partial_{n-1}=0$, and hence we have the chain complex

$$
\ldots \rightarrow C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_{n}(X) \xrightarrow{\partial_{n}} C_{n-1}(X) \rightarrow \ldots \rightarrow C_{0}(X) \xrightarrow{\partial_{0}} 0 .
$$

(v) The singular homology group $H_{n}(X)$.
(vi) Let $X=\sqcup_{\alpha} X_{\alpha}$, where the X_{α} are its path components. Then

$$
H_{n}(X) \cong \oplus_{\alpha} H_{n}\left(X_{\alpha}\right) .
$$

(vii) If X is nonempty and path-connected, then $H_{0}(X) \cong \mathbb{Z}$.
(viii) If X is a point, then $H_{n}(X)=0$ for $n>0$ and $H_{0}(X) \cong \mathbb{Z}$.
(ix) The augmented chain complex

$$
\ldots \rightarrow C_{2}(X) \rightarrow C_{1}(X) \rightarrow C_{0}(X) \xrightarrow{\epsilon} \mathbb{Z} \rightarrow 0,
$$

where ϵ is defined by $\epsilon\left(\sum_{i} n_{i} \sigma_{i}\right)=\sum_{i} n_{i}$.
(x) The reduced homology group $\widetilde{H}_{n}(X)$ are the homology groups associated with the augmented chain complex.
(xi) A continuous map $f: X \rightarrow Y$ induces a homomorphism

$$
f_{*}: H_{n}(X) \rightarrow H_{n}(Y)
$$

(xii) For the composed mapping $X \xrightarrow{g} Y \xrightarrow{f} Z$, we have $(f g)_{*}=f_{*} g_{*}$.
(xiii) If $f, g: X \rightarrow Y$ are maps such that $f \simeq g$, then $f_{*}=g_{*}$. Consequently, $\left(i_{X}\right)_{*}=i_{H_{n}(X)}$.
(xiv) If $X \simeq Y$, then $H_{n}(X) \cong H_{n}(Y)$. In particular, if X is contractible, then $\widetilde{H}_{n}(X)=0$ for all n.
(xv) A continuous map $f: X \rightarrow Y$ induced a homomorphism

$$
f_{*}: H_{n}(X) \rightarrow H_{n}(Y) .
$$

(xvi) If $f, g: X \rightarrow Y$ are continuous maps such that $f \simeq g$, then $f_{*}=g_{*}$.
(xvii) Suppose that $f, g: X \rightarrow Y$ be continuous maps such that $f \simeq g(v i a H)$.

Let $P: C_{n}(X) \rightarrow C_{n+1}(Y)$ be the prism operator, which is defined by

$$
P(\sigma)=\sum_{i} F \circ\left(\sigma \times i_{I}\right) \mid\left[v_{0} \ldots v_{i}, w_{i}, \ldots, w_{n}\right]
$$

Then $\partial P+P \partial=g_{\#}-f_{\#}$.
(xviii) If $X \simeq Y$, then $H_{n}(X) \cong H_{n}(Y)$ for all n.
(xix) Properties of exact sequences.
(xx) For a pair (X, A), the group of relative n-chains

$$
C_{n}(X, A)=C_{n}(X) / C_{n}(A) .
$$

(xxi) Relative homology groups $H_{n}(X, A)$.
(xxii) The boundary map $\partial: H_{n}(X, A) \rightarrow H_{n-1}(A)$.
(xxiii) The sequence of homology groups

$$
\ldots \rightarrow H_{n}(A) \xrightarrow{i_{*}} H_{n}(X) \xrightarrow{j_{*}} H_{n}(X, A) \xrightarrow{\partial} H_{n-1}(A) \rightarrow \ldots
$$

is exact.
(xxiv) The sequence of reduced homology groups

$$
\ldots \rightarrow \widetilde{H}_{n}(A) \xrightarrow{i_{*}} \widetilde{H}_{n}(X) \xrightarrow{j_{*}} \widetilde{H}_{n}(X, A) \xrightarrow{\partial} \widetilde{H}_{n-1}(A) \rightarrow \ldots
$$

is exact.
(xxv) For the pair $\left(D^{n}, \partial D^{n}\right)$,

$$
H_{i}\left(D^{n}, \partial D^{n}\right) \cong\left\{\begin{array}{lc}
\mathbb{Z}, & \text { for } i=n \\
0, & \text { otherwise }
\end{array}\right.
$$

(xxvi) For the pair $\left(X,\left\{x_{0}\right\}\right)$, where $x_{0} \in X$,

$$
H_{n}\left(X,\left\{x_{0}\right\}\right) \cong \widetilde{H}_{n}(X)
$$

(xxvii) Let (X, A, B) be a triple of spaces, where $B \subset A \subset X$. Then we have the following long exact sequence of homology groups:

$$
\ldots \rightarrow H_{n}(A, B) \rightarrow H_{n}(X, B) \rightarrow H_{n}(X, A) \rightarrow H_{n-1}(A, B) \rightarrow \ldots
$$

(xxviii) If two maps $f, g:(X, A) \rightarrow(Y, B)$ are homotopic through maps of pairs $(X, A) \rightarrow(Y, B)$. then $f_{*}=g_{*}$.
(xxix) (Excision Theorem) Given subspaces $Z \subset A \subset X$ such that $\bar{Z} \subset A^{\circ}$, then the inclusion $i:(X-Z, A-Z) \hookrightarrow(X, A)$ induces isomorphisms $H_{n}(X-Z, A-Z) \xrightarrow{i_{*}} H_{n}(X, A)$ for all n.
(xxx) Good pairs of spaces (X, A).
(xxxi) For good pairs of spaces (X, A), the quotient map $q:(X, A) \rightarrow$ $(X / A, A / A)$ induces an isomorphism

$$
q_{*}: H_{n}(X, A) \rightarrow H_{n}(X / A, A / A) \cong \widetilde{H}_{n}(X / A),
$$

for all n.
(xxxii) For good pairs $(X, A), \widetilde{H}_{n}(X \cup C A) \cong H_{n}(X, A)$.
(xxxiii) For the pair $\left(D^{n}, \partial D^{n}\right)$, we have

$$
H_{n}\left(D^{n}, \partial D^{n}\right)=\left\langle\left[i_{\Delta^{n}}\right]\right\rangle,
$$

where $i_{\Delta^{n}}$ is viewed as singular a n-cycle in $C_{n}\left(D^{n}, \partial D^{n}\right)$.
(xxxiv) Regard S^{n} as a Δ-complex built from two n-simplices Δ_{1}^{n} and Δ_{2}^{n} with their boundaries identified. Then we have

$$
H_{n}\left(S^{n}\right)=\left\langle\left[\Delta_{1}^{n}-\Delta_{2}^{n}\right]\right\rangle,
$$

where $\Delta_{1}^{n}-\Delta_{2}^{n}$ is viewed as singular n-cycle in $C_{n}\left(S^{n}\right)$.
(xxxv) If (X, A) is a good pair of spaces, then there is an exact sequence of reduced homology groups

$$
\ldots \rightarrow \widetilde{H}_{n}(A) \xrightarrow{i_{*}} \widetilde{H}_{n}(X) \xrightarrow{j_{*}} \widetilde{H}_{n}(X / A) \xrightarrow{\partial} \widetilde{H}_{n-1}(A) \rightarrow \ldots,
$$

where $i: A \hookrightarrow X$ is the inclusion map and $j: X \rightarrow X / A$ is the quotient map.
(xxxvi) $\widetilde{H}_{i}\left(S^{n}\right) \cong\left\{\begin{array}{lc}\mathbb{Z}, & \text { for } i=n \\ 0, & \text { otherwise. }\end{array}\right.$
(xxxvii) (Brouwer's fixed-point theorem) Every continuous map $f: D^{n} \rightarrow D^{n}$ has a fixed point.
(xxxviii) If a $C W$ complex X is the union of subcomplexes A and B, then the inclusion $(B, A \cap B) \hookrightarrow(X, A)$ induces isomorphisms $H_{n}(B, A \cap B) \rightarrow$ $H_{n}(X, A)$ for all n.
(xxxix) If a wedge sum \bigvee_{α} of spaces is formed at base points $x_{\alpha} \in X_{\alpha}$ such that each pair (X_{α}, x_{α}) is good, then the inclusions $i_{\alpha}: H_{\alpha} \hookrightarrow \bigvee_{\alpha} X_{\alpha}$ induces an isomorphism

$$
\oplus_{\alpha}\left(i_{\alpha}\right)_{*}: \oplus_{\alpha} \widetilde{H}_{n}\left(X_{\alpha}\right) \rightarrow \widetilde{H}_{n}\left(\vee_{\alpha} X_{\alpha}\right)
$$

(xl) If nonempty open sets $U \subset \mathbb{R}^{m}$ and $V \subset \mathbb{R}^{n}$ are homeomorphic, then $m=n$.
(xli) (Naturality Property) If $f:(X, A) \rightarrow(Y, b)$ is a continuous map of pairs, then the diagram

is commutative.
(xlii) Let X be a Δ-complex, and A a subcomplex. Then the relative homology $H_{n}^{\Delta}(X)$ can defined using the relative chains

$$
\Delta_{n}(X, A)=\Delta_{n}(X) / \Delta_{n}(A) .
$$

(xliii) For the Δ-complex pair (X, A), there exists a long exact sequence of homology groups

$$
\ldots \rightarrow H_{n}^{\Delta}(A) \xrightarrow{i} H_{n}^{\Delta}(X) \xrightarrow{j} H_{n}^{\Delta}(X, A) \xrightarrow{\partial} H_{n-1}^{\Delta}(A) \rightarrow \ldots,
$$

(xliv) Let $\phi_{*}: H_{n}^{\Delta}(X, A) \rightarrow H_{n}(X, A)$ be the canonical homomorphism induced by the chain map $\phi: \Delta_{n}(X, A) \rightarrow C_{n}(X, A)$ sending each n simplex Δ^{n} of X to its characteristic map $\sigma: \Delta^{n} \rightarrow X$. Then ϕ_{*} is an isomorphism.

1.3 Cellular homology

(i) The chain group $C_{n}^{C W}(X)=H_{n}\left(X^{n}, X^{n-1}\right)$, and the chain complex

$$
\ldots C_{n+1}^{C W}(X) \xrightarrow{d_{n+1}} C_{n}^{C W}(X) \xrightarrow{d_{n}} C_{n-1}^{C W}(X) \rightarrow \ldots,
$$

where

$$
d_{n}\left(e_{\alpha}^{n}\right)=\sum_{\beta} d_{\alpha \beta} e_{\beta}^{n-1}
$$

and

$$
d_{\alpha \beta}=\operatorname{deg}\left(S_{\alpha}^{n-1} \rightarrow X^{n-1} \rightarrow S_{\beta}^{n-1}\right)
$$

that is the composition of the attaching map of e_{α}^{n} with the quotient map collapsing $X^{n-1} \backslash e_{\beta}^{n-1}$ to a point.
(ii) The cellular homology group is defined by

$$
H_{n}^{C W}(X)=\operatorname{Ker} d_{n} / \operatorname{Im} d_{n+1} .
$$

(iii) If X is a CW complex, then:
(a) $H_{k}\left(X^{n}, X^{n-1}\right)= \begin{cases}0 & \text { if } k \neq n, \text { and } \\ \oplus_{\alpha}\left\langle\left[C_{\alpha}^{n}\right]\right\rangle & \text { if } k=n .\end{cases}$
(b) $H_{k}\left(X^{n}\right)=0$ for $k>n$.
(c) The inclusion $i: X^{n} \hookrightarrow X$ induces an isomorphism $i_{*}: H_{k}\left(X^{n}\right) \rightarrow$ $H_{k}(X)$, if $k<n$.
(iv) $H_{n}^{C W}(X) \cong H_{n}(X)$.

1.4 Mayer-Vietoris Sequences

(i) For a pair of subspaces $A, B \subset X$ such that $X=A^{\circ} \cup B^{\circ}$, there is an long exact sequence of the form

$$
\ldots \rightarrow H_{n}(A \cap B) \xrightarrow{\Phi_{*}} H_{n}(A) \oplus H_{n}(B) \xrightarrow{\Psi_{*}} H_{n}(X) \xrightarrow{\partial} H_{n-1}(A \cap B) \ldots \rightarrow H_{0}(X) \rightarrow 0,
$$

which is associated with the short exact sequence

$$
0 \rightarrow C_{n}(A \cap B) \xrightarrow{\Phi} C_{n}(A) \oplus C_{n}(B) \xrightarrow{\Psi} C_{n}(A+b) \rightarrow 0
$$

where $\Phi(x)=(x,-x)$, and $\Psi(x, y)=x+y$.
(ii) There exists a long exact sequence identical to the one above involving reduced homology groups.
(iii) Viewing the Klein Bottle K as the union of two Mobius bands identified along their boundaries, we have that

$$
H_{n}(K) \cong \begin{cases}\mathbb{Z}, & n=0 \\ \mathbb{Z}, \oplus \mathbb{Z}_{2} & n=1 \\ 0, & \text { otherwise }\end{cases}
$$

1.5 Homology with coefficients

(i) For a fixed abelian group G, the abelian chain groups $C_{n}(X ; G)=$ $\left\{\sum_{i} n_{i} \sigma_{i}: n_{i} \in G\right.$ and $\left.\sigma_{i}: \Delta^{n} \rightarrow X\right\}$.
(ii) The relative chain groups $C_{n}(X, A ; G)=C_{n}(X ; G) / C_{n}(A ; G)$.
(iii) Both $C_{n}(X ; G)$ and $C_{n}(X, A ; G)$ form chain complexes, and the homology groups of their associated homology groups with coefficients in G are denoted by $H_{n}(X ; G)$ and $H_{n}(X, A ; G)$ respectively.
(iv) When $G=\mathbb{Z}_{2}, n$-chains are simply sums (or maybe viewed as unions) of finitely many singular n-simplices. Hence, this is the most natural tool in the absence of orientation.
(v) Mayer-Vietros sequence and the Cellular homology generalise to homology with coefficients.
(vi) If $f: S^{k} \rightarrow S^{k}$ has degree m, then $f_{*}: H_{k}\left(S^{k} ; G\right) \rightarrow H_{k}\left(S^{k} ; G\right)$ is multiplication by m.
(vii) Let F be a field of characteristic 2. Then

$$
H_{n}\left(\mathbb{R} P^{n} ; F\right) \cong \begin{cases}F, & 0 \leq k \leq n \\ 0 & \text { otherwise }\end{cases}
$$

(viii) Given an abelian group G and an integer $n \geq 1$, the Moore space $M(G, n)$ is a $C W$ - complex X satisfying
(a) $H_{n}(X) \cong G$ and $\widetilde{H}_{i}(X)$, if $i \neq n$, and
(b) X is simply-connected if $n>1$.
(ix) The Moore space $X=M\left(\mathbb{Z}_{m}, n\right)$ is obtained by attached e^{n+1} to S^{n} by a degree m map.

1.6 Applications of homology

(i) The degree of a map $f: S^{n} \rightarrow S^{n}$ denoted by $\operatorname{deg} f$, and its properties.
(ii) S^{n} has a continuous tangent vector field iff n is odd.
(iii) For n even, \mathbb{Z}_{2} is the only nontrivial group that can act freely on S^{n}.
(iv) The local degree of a map $f: S^{n} \rightarrow S^{n}$ at a point x_{i} denoted by $\left.\operatorname{deg} f\right|_{x_{i}}$.
(v) $\operatorname{deg} f=\left.\sum_{i} \operatorname{deg} f\right|_{x_{i}}$.
(vi) The map $z^{k}: S^{1} \rightarrow S^{1}$ has degree k.
(vii) Constructing a map $f: S^{n} \rightarrow S^{n}$ of any given degree k.
(viii) If $S f: S^{n+1} \rightarrow S^{n+1}$ is the suspension of the map $f: S^{n} \rightarrow S^{n}$, then $\operatorname{deg} S f=\operatorname{deg} f$.
(ix) $H_{i}\left(\mathbb{C} P^{n}\right) \cong \begin{cases}\mathbb{Z} & \text { for } i=0,2, \ldots, 2 n \\ 0 & \text { otherwise } .\end{cases}$
(x) $H_{i}\left(\mathbb{R} P^{n}\right) \cong \begin{cases}\mathbb{Z} & \text { for } i=0 \text { or } i=n \text { odd } \\ \mathbb{Z}_{2} & \text { for } i \text { odd, } 0<i<n \\ 0 & \text { otherwise. }\end{cases}$
(xi) Let S_{g} denote the closed orientable surface of genus g. Then

$$
H_{i}\left(S_{g}\right) \cong \begin{cases}\mathbb{Z} & \text { for } i=0,2 \\ \mathbb{Z}^{2 g} & \text { for } i=1 \\ 0 & \text { otherwise }\end{cases}
$$

(xii) Let N_{g} denote the closed nonorientable surface with g crosscaps. Then

$$
H_{i}\left(N_{g}\right) \cong \begin{cases}\mathbb{Z} & \text { for } i=0 \\ \mathbb{Z}^{g-1} \oplus \mathbb{Z}_{2} & \text { for } i=1 \\ 0 & \text { otherwise }\end{cases}
$$

(xiii) The Euler Characteristic of a finite-dimensional CW complex X having $c_{i} i$-cells for $0 \leq i \leq n$, is given by

$$
\chi(X)=\sum_{i=0}^{n}(-1)^{i} c_{n}
$$

(xiv) If $X=X^{n}$ is a CW complex, then

$$
\chi(X)=\sum_{i=0}^{n}(-1)^{i} \operatorname{rank} H_{n}(X)
$$

(xv) If $X=X^{n}$ and $Y=Y^{n}$ are CW complexes such that $X \approx Y$, then $\chi(X)=\chi(Y)$.
(xvi) If $r: X \rightarrow A$ is a retraction, then $i_{*} H_{n}(A) \rightarrow H_{n}(X)$ induced by the inclusion $i: A \hookrightarrow X$ is injective. Hence, we have a short exact sequence

$$
0 \rightarrow H_{n}(A) \xrightarrow{i_{*}} H_{n}(X) \xrightarrow{j_{*}} H_{n}(X, A) \rightarrow 0
$$

that splits since $r_{*} \circ i_{*}=\left(i_{A}\right)_{*}$. Consequently,

$$
H_{n}(X) \cong H_{n}(A) \oplus H_{n}(X, A)
$$

(xvii) A $K(G, 1)$ space X is a path-connected space with contractible universal cover, and which satisfies $\pi_{1}(X) \cong G$.
(xviii) If a finite-dimensional $C W$ complex is a $K(G, 1)$, then the group $G=$ $\pi_{1}(X)$ is torsion-free.
(xix) If D is a subspace of S^{n} homeomorphic to D^{k} for some $k \geq 0$, then $\widetilde{H}_{i}\left(S^{n}-D\right)=0$, for all i.
(xx) (Generalised Jordan Curve Theorem). If S is a subspace of S^{n} homeomorphic to S^{k} for some k with $0 \leq k \leq n$, then

$$
\widetilde{H}_{i}\left(S^{n}-S\right) \cong \begin{cases}\mathbb{Z} & \text { for } i=n-k-1, \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

(xxi) (Invariance of Domain) If a subspace X of \mathbb{R}^{n} is homeomorphic to an open set in \mathbb{R}^{n}, then X is itself open in \mathbb{R}^{n}.
(xxii) If M is a compact n-manifold and N is a connected n-manifold, then an embedding $M \hookrightarrow N$ must be surjective.
(xxiii) An odd map $f: S^{n} \rightarrow S^{n}$ must have odd degree.
(xxiv) (Borsuk-Ulam Theorem) For every map $g: S^{n} \rightarrow \mathbb{R}^{n}$, there exists a point $x \in S^{n}$ such that $g(x)=g(-x)$.

2 Singular Cohomology

(i) Motivation for cohmology.
(ii) The cochain complex C^{*} of free abelian groups

$$
\ldots \leftarrow C_{n+1}^{*} \stackrel{\delta_{n+1}}{\leftarrow} C_{n}^{*} \stackrel{\delta_{n}}{\leftarrow} C_{n-1}^{*} \leftarrow \ldots,
$$

is the dual of the chain complex C

$$
\ldots \rightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} C_{n-1} \rightarrow \ldots,
$$

where for all $i, C_{i}^{*}=\operatorname{Hom}\left(C_{i}, G\right)$ and $\delta_{i}=\partial_{i}^{*}$,
(iii) The cohomology groups

$$
H^{n}(C ; G)=\operatorname{Ker} \delta_{n+1} / \operatorname{Im} \delta_{n}
$$

(iv) There exists a natural map $h: H^{n}\left(C^{*} ; G\right) \rightarrow \operatorname{Hom}\left(H_{n}(C), G\right)$, which yields the following split short exact sequence

$$
0 \rightarrow \operatorname{Ker} h \rightarrow H^{n}\left(C^{*} ; G\right) \xrightarrow{h} \operatorname{Hom}\left(H_{n}(C), G\right) \rightarrow 0
$$

(v) There is a long exact sequence

$$
\ldots \leftarrow B_{n}^{*} \stackrel{i_{n}^{*}}{\leftarrow} Z_{n}^{*} \leftarrow H^{n}\left(C^{*} ; G\right) \leftarrow B_{n-1}^{*} \leftarrow \ldots
$$

associated with the short exact sequence

$$
0 \leftarrow Z_{n}^{*} \stackrel{j_{n}^{*}}{\leftarrow} C_{n}^{*} \stackrel{\delta_{n}}{\leftarrow} B_{n-1}^{*} \leftarrow 0
$$

where i_{n}^{*} and i_{*} are the duals of the inclusions $i_{n}: B_{n} \hookrightarrow Z_{n}$, and $j_{n}: Z_{n} \hookrightarrow C_{n}$, respectively. This long exact sequence can be expressed as the direct sum of (or can be decomposed to) the split short exact sequences

$$
0 \rightarrow \text { Coker } i_{n-1}^{*} \rightarrow H^{n}\left(C^{*} ; G\right) \xrightarrow{h} \operatorname{Hom}\left(H_{n}(C), G\right) \rightarrow 0
$$

(vi) A free resolution F_{H} of an abelian group H is an exact sequence of free groups

$$
\ldots \rightarrow F_{2} \xrightarrow{f_{2}} F_{1} \xrightarrow{f_{1}} F_{0} \xrightarrow{f_{0}} H \rightarrow 0 .
$$

The dual of the free resolution is denoted by $F_{H}{ }^{*}$.
(vii) A homomomorphism $\alpha: H \rightarrow H^{\prime}$ induces a chain map from $F_{H} \rightarrow F_{H^{\prime}}$. Furthermore, any two such chain maps are chain homotopic.
(viii) For any two free resolutions F_{H} and F_{H}^{\prime} of H, there are canonical isomorphisms $H^{n}\left(F_{H}{ }^{*} ; G\right) \cong H^{n}\left(F_{H}^{\prime}{ }^{*} ; G\right)$.
(ix) Since every abelian group H has a free resolution of the form

$$
0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow H \rightarrow 0,
$$

$H^{n}\left(F_{H}{ }^{*} ; G\right)=0$, for $n>1$, and $H^{n}\left(F_{H}{ }^{*} ; G\right)$ depends only on H and G, and is denoted by $\operatorname{Ext}(H, G)$.
(x) The group $\operatorname{Ext}(H, G)$ has the following properties.
(i) $\operatorname{Ext}\left(H \oplus H^{\prime}, G\right) \cong \operatorname{Ext}(H, G) \oplus \operatorname{Ext}\left(H^{\prime}, G\right)$.
(ii) $\operatorname{Ext}(H, G)=0$, if H is free.
(iii) $\operatorname{Ext}\left(\mathbb{Z}_{n}, G\right) \cong G / n G$.
(xi) Since there is a free resolution F_{H} when $H=H_{n-1}(C)$

$$
0 \rightarrow B_{n-1} \xrightarrow{i_{n-1}} Z_{n-1} \rightarrow H_{n-1}(C) \rightarrow 0,
$$

its dual $F_{H}{ }^{*}$

$$
0 \leftarrow B_{n-1}^{*} \stackrel{i_{n-1}^{*}}{\leftarrow} Z_{n-1}^{*} \leftarrow H_{n-1}(C)^{*} \leftarrow 0
$$

yields the isomorphisms

$$
\operatorname{Coker}\left(i_{n-1}^{*}\right) \cong \operatorname{Ext}\left(H_{n-1}(C), G\right)
$$

(xii) (Universal Coefficient Theorem for Cohomology) If C is a chain complex of free abelian groups, then the cohomology groups $H^{n}(C ; G)$ of the cochain complex C^{*} are determined by the split exact sequence

$$
0 \rightarrow \operatorname{Ext}\left(H_{n-1}(C), G\right) \rightarrow H^{n}\left(C^{*} ; G\right) \xrightarrow{h} \operatorname{Hom}\left(H_{n}(C), G\right) \rightarrow 0
$$

Consequently, we have the isomorphisms

$$
H^{n}\left(C^{*} ; G\right) \cong \operatorname{Ext}\left(H_{n-1}(C), G\right) \oplus \operatorname{Hom}\left(H_{n}(C), G\right)
$$

(xiii) Let the homology groups $H_{n}=F_{n} \oplus T_{n}$ and $H_{n-1}=F_{n-1} \oplus T_{n-1}$ of a chain complex C be finitely generated abelian groups. Then

$$
H^{n}\left(C^{*} ; Z\right) \cong T_{n-1} \oplus\left(H_{n} / T_{n}\right)
$$

(xiv) If a chain map between two chain complexes of free abelian groups induces an isomorphism of homology groups, then it induces isomorphisms of cohomology groups with any coefficient group G.

2.1 Cup product

(i) Let R be a commutative ring with identity. For cochains $\varphi \in C^{k}(X ; R)$ and $\psi \in C^{\ell}(X ; R)$, the cup product $\varphi \smile \psi$ is the cochain whose value on a singular simplex $\sigma: \Delta^{k+\ell} \rightarrow X$ is given by the formula

$$
(\varphi \smile \psi)(\sigma)=\varphi\left(\sigma \mid\left[v_{0}, \ldots, v_{k}\right]\right) \psi\left(\sigma \mid\left[v_{k}, \ldots, v_{k+\ell}\right]\right)
$$

(ii) For $\varphi \in C^{k}(X ; R)$ and $\psi \in C^{\ell}(X ; R)$,

$$
\delta(\varphi \smile \psi)(\sigma)=\delta \varphi \smile \psi+(-1)^{k} \varphi \smile \delta \psi
$$

(iii) The cup product has the following properties.
(a) The cup product of two cocycles is a cocycle.
(b) The cup product of a cocycle and a coboundary in any order is a coboundary.
(c) Hence the cup product induces a map at the level of cohomology

$$
H^{k}(X ; R) \times H^{\ell}(X ; R) \hookrightarrow H^{k+\ell}(X ; R)
$$

which is both associative and distributive.
(iv) For a map $f: X \rightarrow Y$, the induced maps $f^{*}: H^{n}(Y ; R) \rightarrow H^{n}(X ; R)$ satisfy

$$
f^{*}(\alpha \smile \beta)=f^{*}(\alpha) \smile f^{*}(\beta)
$$

(v) For a commutative ring R with identity, $H^{*}(X ; R)=\oplus_{k} H^{k}(X ; R)$ forms a commutative ring with identity. Furthermore, $H^{*}(X ; R)$ is a graded ring under \smile.
(vi) For a graded ring A with decomposition $A=\oplus_{k \geq 0} A_{k}$, to indicate that $a \in A$ lies in A_{k}, we write $|a|=k$.
(vii) $H^{*}\left(\mathbb{R} P^{n} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}[\alpha] /\left(\alpha^{n+1}\right)$, and $H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}[\alpha]$, where $|\alpha|=1$. In the complex case, $H^{*}\left(\mathbb{C} P^{n} ; \mathbb{Z}\right) \cong \mathbb{Z}[\alpha] /\left(\alpha^{n+1}\right)$, and $H^{*}\left(\mathbb{C} P^{\infty} ; \mathbb{Z}\right) \cong$ $\mathbb{Z}[\alpha]$, where $|\alpha|=2$.
(viii) The inclusions $i_{\alpha}: X_{\alpha} \hookrightarrow \sqcup_{\alpha} X_{\alpha}$ induce the isomorphism

$$
H^{*}\left(\sqcup_{\alpha} X_{\alpha} ; R\right) \cong \prod_{\alpha} H^{*}\left(X_{\alpha} ; R\right)
$$

(ix) For basepoints $x_{\alpha} \in X_{\alpha}$, if (X_{α}, x_{α}) form good pairs, then we have that

$$
\widetilde{H}^{*}\left(\vee_{\alpha} X_{\alpha} ; R\right) \cong \prod_{\alpha} \widetilde{H}^{*}\left(X_{\alpha} ; R\right)
$$

(x) If R is a commutative ring, then

$$
\alpha \smile \beta=(-1)^{k \ell} \beta \smile \alpha,
$$

for all $\alpha \in H^{k}(X, A ; R)$ and $\beta \in H^{\ell}(X, A ; R)$.
(xi) $\mathbb{C} P^{2}$ is not homotopically equivalent to $S^{2} \vee S^{4}$, even though they have isomorphic homology and cohomology groups.

2.2 Orientations and homology

(i) The local orientation of an n-manifold M at a point x is a choice of generator μ_{x} of the group the infinite cyclic group $H_{n}(M, M-\{x\}) \cong \mathbb{Z}$.
(ii) Every manifold M has a two-sheeted covering space

$$
\widetilde{M}=\cup_{x \in M}\left\{\mu_{x}, \mu_{-x}\right\}
$$

(iii) The covering space $\widetilde{M} \rightarrow M$ can be imbedded in a larger covering space $M_{\mathbb{Z}} \rightarrow M$ given by

$$
M_{\mathbb{Z}}=\cup_{x \in M}\left\{0, \mu_{ \pm x}, \mu_{ \pm 2 x}, \ldots\right\},
$$

where $\mu_{k x} \leftrightarrow k \in \mathbb{Z} \cong H_{n}(M \mid x)$.
(iv) A continuous map $M \rightarrow M_{\mathbb{Z}}$ of the form $x \mapsto \alpha_{x} \in H_{n}(M \mid x)$ is called a section of covering space.
(v) An orientation for M is a section such that α_{x} is a generator for each x. If there exists an orientation for M, then M is said to orientable.
(vi) An R-orientation for M, where R is a commutative ring with identity, is a section of the covering space M_{R} that assigns to each $x \in M$, a generator $\alpha_{x} \in H_{n}(M \mid x ; R)$.
(vii) Let M be an n-manifold. Then:
(a) \widetilde{M} is orientable, and
(b) if M is connected, then M is orientable if, and only if \widetilde{M} has two components. In particular, M is orientable, if its simply-connected, or more generally, if $\pi_{1}(M)$ has no subgroup of index 2 .
(viii) An orientable manifold is R-orientable for all R, while a nonorientable manifold is R-orientable if, and only if R contains a unit of order 2 . In particular, every manifold is \mathbb{Z}_{2}-orientable.
(ix) Let M be a manifold of dimension n, and let $A \subset M$ be a compact subset. Then:
(a) $H_{i}(M \mid A ; R)=0$ for $i>n$, and a class in $H_{n}(M \mid A ; R)$ is zero if, and only if its image in $H_{n}(M \mid x ; R)$ is zero for all $x \in A$.
(b) If $x \mapsto \alpha_{x}$ is a section of the covering space $M_{R} \rightarrow M$, then there exists a unique class $\alpha_{A} \in H_{n}(M \mid A ; R)$ whose image in $H_{n}(M \mid x ; R)$ is a α_{x} for all $x \in A$.
(x) Let M be a closed connected n-manifold, Then:
(a) If M is R-orientable, the map $H_{n}(M ; R) \rightarrow H_{n}(M \mid x ; R) \cong R$ is an isomorphism for all $x \in M$.
(b) If M is not R-orientable, the map $H_{n}(M ; R) \rightarrow H_{n}(M \mid x ; R) \cong R$ is injective with image $\{r \in R \mid 2 r=0\}$ for all $x \in M$.
(c) $H_{i}(M ; R)=0$, for $i>n$.
(xi) An element $[M] \in H_{n}(M ; R)$ whose image in $H_{n}(M \mid x ; R)$ is a generator for all x is called a fundamental class.
(xii) If M is a closed connected n-manifold, the torsion subgroup of $H_{n-1}(M ; Z)$ is trivial if M is orientable and \mathbb{Z}_{2} if M is orientable.

2.3 Cap product and Poincaré Duality

(i) For an arbitrary space X and a coefficient ring R, we define an R-linear cap product map

$$
\frown: C_{k}(X ; R) \times C^{\ell}(X ; R) \rightarrow C_{k-\ell}(X ; R)
$$

for $k \geq \ell$, by sending a singular k-simplex $\sigma: \Delta^{k} \rightarrow X$ and a cochain $\varphi \in C^{\ell}(X ; R)$ to the singular $(k-\ell)$-simplex

$$
\sigma \frown \varphi=\varphi\left(\sigma \mid\left[v_{0}, \ldots, v_{\ell}\right]\right) \sigma \mid\left[v_{\ell}, \ldots, v_{k}\right] .
$$

(ii) The cap product has the following properties:
(a) For any $\sigma \in C_{k}(X ; R)$ and $\varphi \in C^{\ell}(X ; R)$,

$$
\partial(\sigma \frown \varphi)=(-1)^{\ell}(\partial \sigma \frown \varphi-\sigma \frown \delta \varphi) .
$$

(b) Cap product of a cycle and a cocycle is a cocycle.
(c) Cap product of a cycle and a coboundary is a boundary.
(d) Cap product of a boundary and a cocycle is a boundary.
(e) Thus, there is an induced cap product

$$
H_{k}(X ; R) \times H^{\ell}(X ; R) \hookrightarrow H_{k-\ell}(X ; R)
$$

that is R-linear in each variable.
(f) Given a map $f: X \rightarrow Y$,

$$
f_{*}(\alpha) \frown \varphi=f_{*}\left(\alpha \frown f^{*}(\varphi)\right) .
$$

(iii) (Poincaré Duality for closed manifolds) If M is a closed R-orientable n-manifold with fundamental class $[M] \in H_{n}(M ; R)$, then the map D : $H^{k}(M ; r) \rightarrow H_{n-k}(M ; r)$ defined by $D(\alpha)=[M] \frown \alpha$ is an isomorphism for all k.
(iv) Let $C_{c}^{i}(X ; G)$ be the subgroup of $C^{i}(X ; G)$ consisting of all cochains $\varphi: C_{i}(X) \rightarrow G$ that are supported by a compact subset $K_{\varphi} \subset X$. The cohomology groups $H_{c}^{i}(X ; G)$ of this subcomplex are called cohomology groups with compact support.
(v) Let $X_{c}=\{K \subset X \mid K$ is compact $\}$, then

$$
C_{c}^{i}(X ; G)=\bigcup_{K \in X_{c}} C^{i}(X, X-K ; G)
$$

(vi) For $K, L \in X_{c}$ such that $K \subset L$, the inclusion $K \hookrightarrow L$ induces inclusions $C^{i}(X, X-K ; G) \hookrightarrow C^{i}(X, X-L ; G)$.
(vii) Consequently, $\left\{H^{i}(X, X-K ; G) \mid K \in X_{c}\right\}$ forms a directed system of groups, and we have

$$
H_{c}^{i}(X ; G)={\underset{K \in X}{c}}^{\lim _{K \rightarrow}} H^{i}(X, X-K ; G)
$$

(viii) Suppose that $X=\cup_{\alpha \in J} X_{\alpha}$, where J is a directed set. If for each compact $K \subset X$, there exists $\alpha=\alpha(K) \in J$ such that $K \subset X_{\alpha}$, then we have

$$
H_{i}(X ; G) \cong \underset{\longrightarrow}{\lim } H_{i}\left(X_{\alpha} ; G\right) .
$$

(ix)

$$
H_{c}^{i}\left(\mathbb{R}^{n} ; G\right) \cong \begin{cases}G, & \text { for } i=n, \text { and } \\ 0, & \text { otherwise }\end{cases}
$$

3 Homotopy Groups

(i) For a pair $\left(X, x_{0}\right)$, we define

$$
\pi_{n}\left(X, x_{0}\right):=\left\{[f] \mid f:\left(I^{n}, \partial I^{n}\right) \rightarrow\left(X, x_{0}\right)\right\}
$$

(ii) Alternatively, we can define

$$
\pi_{n}\left(X, x_{0}\right):=\left\{[f] \mid f:\left(S^{n}, s_{0}\right) \rightarrow\left(X, x_{0}\right)\right\} .
$$

(iii) When $n \geq 2$, we define an operation $+\operatorname{in} \pi_{n}\left(X, x_{0}\right)$ by:

$$
(f+g)\left(s_{1}, \ldots, s_{n}\right)= \begin{cases}f\left(2 s_{1}, s_{2}, \ldots, s_{n}\right), & s_{1} \in[0,1 / 2] \\ g\left(2 s_{1}-1, s_{2}, \ldots, s_{n}\right), & s_{1} \in[1 / 2,1]\end{cases}
$$

and $[f]+[g]:=[f+g]$.
(iv) $\left(\pi_{n}\left(X, x_{0}\right),+\right)$ is an abelian group.
(v) Let X be a path-connected space. Given a path $\gamma: I \rightarrow X$ from x_{0} to x_{1}, we can associate to each $f:\left(I^{n}, \partial I^{n}\right) \rightarrow\left(X, x_{0}\right)$ a map $f_{\gamma}:\left(I^{n}, \partial I^{n}\right) \rightarrow\left(X, x_{1}\right)$ satisfying the following properties
(a) $(f+g)_{\gamma} \simeq f_{\gamma}+g_{\gamma}$.
(b) $f_{\gamma \eta} \simeq\left(f_{\eta}\right)_{\gamma}$.
(c) $f_{e} \simeq f$, where $e=e_{x_{0}}$.
(vi) Hence there is an induced homomorphism

$$
\Phi_{\gamma}:\left(\pi_{n}\left(X, x_{1}\right),+\right) \rightarrow\left(\pi_{n}\left(X, x_{0}\right),+\right)
$$

given by $\Phi([f])=\left[f_{\gamma}\right]$ which is an isomoprhism.
(vii) A covering space $p:\left(\widetilde{X}, \widetilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ induces isomorphisms p_{*} : $\pi_{n}\left(\tilde{X}, \widetilde{x}_{0}\right) \rightarrow \pi_{n}\left(X, x_{0}\right)$ for all $n \geq 2$. Consequently, $\pi_{n}\left(X, x_{0}\right)=0$ for $n \geq 2$ whenever X has a contractible universal cover.
(viii) Let $\left(X_{\alpha}, x_{\alpha}\right)_{\alpha \in J}$ be an arbitrary collection path-connected spaces. Then the projection maps $p_{\alpha}: \prod_{\beta \in J}\left(X_{\beta}, x_{\beta}\right) \rightarrow\left(X_{\alpha}, x_{\alpha}\right)$ induces the isomorphism

$$
\pi_{n}\left(\prod_{\alpha \in J}\left(X_{\alpha}, x_{\alpha}\right)\right) \cong \prod_{\alpha \in J} \pi_{n}\left(X_{\alpha}, x_{\alpha}\right) .
$$

(ix) For a pair of spaces (X, A) with a basepoint $x_{0} \in A$ and $n \geq 1$, the relative homotopy groups $\left(\pi_{n}\left(X, A, x_{0}\right),+\right)$ are defined by

$$
\pi_{n}\left(X, A, x_{0}\right)=\left\{[f] \mid f:\left(I^{n}, \partial I^{n}, J^{n-1}\right) \rightarrow\left(X, A, x_{0}\right)\right\}
$$

where $J^{n-1}=\overline{\partial I^{n}-I^{n-1}}$. Alternatively, it is defined by

$$
\pi_{n}\left(X, A, x_{0}\right)=\left\{[f] \mid f:\left(D^{n}, S^{n-1}, s_{0}\right) \rightarrow\left(X, A, x_{0}\right)\right\}
$$

where the addition is done via the map $c: D^{n} \rightarrow D^{n} \vee D^{n}$ collapsing $D^{n-1} \subset D^{n}$ to a point.
(x) A map $f:\left(D^{n}, S^{n-1}, s_{0}\right) \rightarrow\left(X, A, x_{0}\right)$ represents zero in $\pi_{n}\left(X, A, x_{0}\right)$ if, and only if it is homotopic rel S^{n-1} to a map with image contained in A.
(xi) For a pair of spaces (X, A) with a basepoint $x_{0} \in A$, the sequence

$$
\ldots \rightarrow \pi_{n}\left(A, x_{0}\right) \xrightarrow{i_{*}} \pi_{n}\left(X, x_{0}\right) \xrightarrow{j_{*}} \pi_{n}\left(X, A, x_{0}\right) \xrightarrow{\partial} \pi_{n-1}\left(A, x_{0}\right) \rightarrow \ldots
$$

is exact.
(xii) For a triple of spaces (X, A, B) with $B \subset A \subset X$ and a basepoint $x_{0} \in B$, the sequence
$\ldots \rightarrow \pi_{n}\left(A, B, x_{0}\right) \xrightarrow{i_{*}} \pi_{n}\left(X, B, x_{0}\right) \xrightarrow{j_{*}} \pi_{n}\left(X, A, x_{0}\right) \xrightarrow{\partial} \pi_{n-1}\left(A, B, x_{0}\right) \rightarrow \ldots$
is exact.
(xiii) (Whitehead Theorem) Suppose that a map $f: X \rightarrow Y$ between connected $C W$ complexes induces isomorphisms $f_{*}: \pi_{n}(X) \rightarrow \pi_{n}(Y)$ for all n. Then:
(a) f is homotopically equivalent to Y, and
(b) furthermore if X is a subcomplex of Y, then X is a deformation retract of Y.

